M.Sc. 1st Semester Examination, 2021 CHEMISTRY

Course Title: Inorganic Chemistry Course Code: CHEM 101C Course ID: 11451

Time: 2 Hours Full Marks: 40

The figures in the right hand side margin indicate full marks.

Candidates are required to give their answers in their own words as

far as practicable

1. Answer *any five* of the followings:

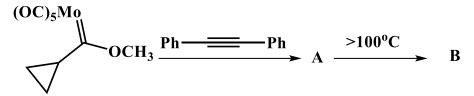
 $2 \times 5 = 10$

- (a) Sketch the structures of all possible isomers of $M(AB)_3$ in which AB is a bidentate unsymmetrical ligand.
- (b) Write down the functions of Vitamin B₆.
- (c) What is an enzyme? What do you mean by oxidoreductases?
- (d) Give an example of fluxional complex.
- (e) Why is NO important in biology?
- (f) Give one example for each of water soluble and fat soluble vitamin.
- (g) The electronic spectrum of $[CoF_6]^{3-}$ shows two bands having maxima around 11,500 cm⁻¹ and 14,500 cm⁻¹. -Explain
- 2. Answer *any four* of the followings:

 $5 \times 4 = 20$

(a) What is aldehyde oxidase? Write the mechanism of function of aldehyde oxidase.

1+4=5


- (b) (i) Derive the relation between stepwise formation constants and overall formation constant.
 - (ii) Identify and find the total number of the isomers of Ma₂b₂c₂ by Bailar's method.

2.5+2.5=5

- (c) (i) Explain why second peak in DTA curve of calcium oxalate monohydrate (CaC₂O₄.H₂O) in air is in the positive side, but that in carbon dioxide atmosphere is in the negative side.
 - (ii) The thermogravimetry analysis curve of a sample of MgC₂O₄•H₂O shows as a function of temperature. The original sample weighing 22.16 mg is heated from room temperature to 1000°C at a rate of 20°C per minute. The sample shows two steps: a loss of 3.06 mg from 100 − 250 °C and a loss of 12.24 mg from 350 −

550°C. For each step, identify the volatilization product and the solid residue that remains. 2+3=5

- (d) What is the difference between cisplatin and transplatin? How does cisplatin work on cancer cells? Why is transplatin not used as an anticancer drug? 1+2+2=5
- (e) (i) Given Δ_0 for H₂O is 1300 cm⁻¹, what would be the CFSE of $[Cr(H_2O)_6]^{2+}$ in high spin and low spin configurations? (Mean pairing energy $P = 23,500 \text{ cm}^{-1}$)
 - (ii) Show that for d^4 high spin metal ions, the relative energy of an octahedral over tetrahedral fields is -6Dq + 4Dq' where 10Dq and 10Dq' are the crystal field splitting in octahedral and tetrahedral fields respectively. 2.5+2.5=5
- (f) (i) Distinguish between Fischer carbene and Schrock carbene.
 - (ii) Write down the structures of A and B.

(iii) Write down the structure of first synthesized diene-complex.

2+2+1=5

3. Attempt *any one* of the followings:

 $10 \times 1 = 10$

- (a) (i) In terms of CFT, explain why all six Cu-OH₂ distances in Cu(H₂O)₆ are not equal.
 - (ii) In a Ni²⁺ complex the absorption bands arising from d-d transition occur at 10750, 17500, 28200 cm⁻¹. Assign the bands from Orgel diagram. Which transition is responsible for the colour of the complex?
 - (iii) Give one example of optically active pure inorganic complex.
 - (iv) The potential of a UO^{2+}/U^{4+} half-cell is -0.0190 V relative to a saturated calomel electrode. What is its potential when using a saturated silver/silver chloride electrode or a standard hydrogen electrode? 2+5+1+2=10
- (b) (i) What do you mean by controlled-potential coulometry and controlled-current coulometry? Why is Pt wire in auxiliary electrode of the coulometry separated by a salt bridge from the analytical solution? Write down two advantages and two disadvantages of controlled-current coulometry over controlled-potential coulometry. Why is controlled-potential coulometric analysis usually carry out in a small volume electrochemical cell, using an electrode with a large surface area, and with a high stirring rate?
 - (ii) Draw the structures of corrin and porphyrin. (1+1+2+2) + (2+2) = 10